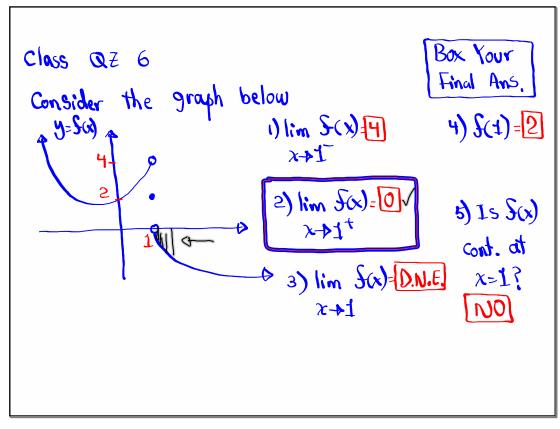


Feb 19-8:47 AM



Sor $\mathcal{E}_{=}.05$, Sind a \$>0 Such that $\lim_{x \to 2} \frac{\chi^2 - 4}{\chi - 2} = 4$. $f(x) = \frac{\chi^2 - 4}{\chi - 2}$ Verify $\lim_{x \to 2} \frac{\chi^2 - 4}{\chi - 2} = 4$ a = 2 $bin \frac{\chi^2 - 4}{\chi - 2} = 0$ I.F. $\chi \to 2$ (a) \mathcal{E}_{-1} $\lim_{x \to 2} \frac{(x-z)(x+2)}{x-z} > \lim_{x \to 2} (x+2) = 2+2-4$ Sor E>0, there is a S>0 Such that $|f(x) - L| < \varepsilon$ whenever $|x - a| < \delta$ $|x^{2}-4|<.05$ whenever |x-2|<5|x+2-4|<.05 |x-2|<.05|x+2-4|<.05 |x-2|<.05|x-2|<.05

Feb 22-8:46 AM

Prove
$$\lim_{x \to 0} \frac{x^2 + x}{x} = 1$$

 $\int (x) = \frac{x^2 + x}{x}$ verify $\lim_{x \to 0} \frac{x^2 + x}{x} = 1$
 $A = 0$ $\lim_{x \to 0} \frac{x^2 + x}{x} = \frac{0}{0}$ I.F.
 $L = 1$ $x \to 0$ $x \to 0$
For every $E > 0$, there is a $S > 0$ such that
 $|\int f(x) - L| < \varepsilon$ whenever $|x - a| < S$
 $|\frac{x^2 + x}{x} - 1| < \varepsilon$ whenever $|x - 0| < S$
 $|\frac{x + x}{x} - 1| < \varepsilon$ whenever $|x| < S$
 $|x| < \varepsilon$ whenever $|x| < S$
 $|x| < \varepsilon$ whenever $|x| < S$

Feb 22-8:53 AM

Sor
$$\varepsilon = .1$$
 Sind \$>0 such that $\lim_{x\to 0} \sqrt[5]{x} = 0$
 $x \to 0$
 $a = 0$
 $b = \varepsilon = .1$, there is a \$>0 such that
 $b = 0$
 $\int \sqrt{x} = 0 | \sqrt{x} + 0 | \sqrt{x} = 0 \sqrt{x} + 0 | \sqrt{x} | \sqrt{x} - 0 | \sqrt{x} | \sqrt{x} + 0 | \sqrt{x} | \sqrt{x} - 0 | \sqrt{x} | \sqrt{x} | \sqrt{x} - 0 | \sqrt{x} | \sqrt{$

Feb 22-8:59 AM

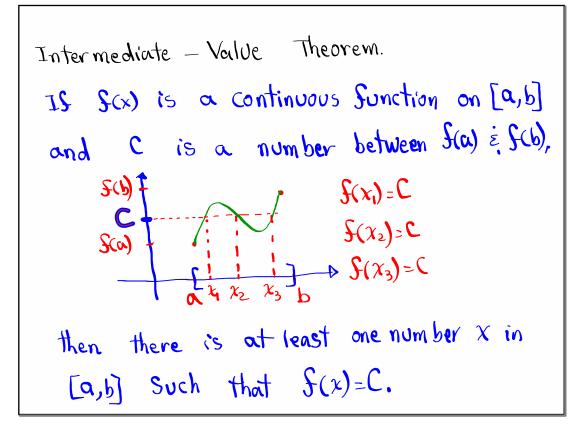
$$\int \sigma x = 1 \quad \text{Sind } \alpha \quad \text{Si$$

Feb 22-9:06 AM

Squeeze Thrm, Sandwich thrm, Pinching Thrm $g(x) \leq f(x) \leq h(x)$ for all points in 11 an open interval where a is belong to and $\lim g(x) = \lim h(x) = L$ 2-00 2-10 lim f(x) = L by Squeeze thrm then X-00 Evaluate $\lim_{x \to \infty} \frac{\chi^4}{\chi} \sin \frac{1}{\chi}$ 2-00 Direct plug in -> 04. Sin(1) = 0 · Č) Recall Srom Trig. $-1 \leq \sin \alpha \leq 1 = 3$ $-1 \leq \sin \frac{1}{\chi} \leq 1$ multiply by 🗙 $-\chi^{4} \leq \chi^{4} \operatorname{Sin} \frac{1}{\chi} \leq \chi^{4}$ Now $\lim_{x \to 0} \chi^4 = 0$ 2-00 by S.T., $\lim_{x \to 0} \chi^4 \sin \frac{1}{x} = 0$ $\lim_{x\to\infty} -\chi^4 = 0$ 2-20

Feb 22-9:21 AM

 $1-x \leq f(x) \leq x^2 + 1$ for all x-values Suppose in the interval (-1,1), Find lim fox). x->0 1x+1 lim (x²+1) = 1 2-70 b^{1-x^2} $\lim_{x \to -x^4} (1-x^4) = 1$ x-20 By S.T., lim f(x)=1 x->0



Feb 22-9:34 AM

Show
$$x^3 - 4x + 1 = 0$$
 has a Solution on [1,2].
Degree Let $S(x) = x^3 - 4x + 1$
Not linew Sunction
 $F(t) = 1^3 - 4(1) + 1 = -2$
 $F(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$
 $f(z) = 2^3 - 4(z) + 1 = 1$

Does
$$x^{3} + x^{2} = 2x + 1$$
 have a Solution in [-1,1]?
at most $x^{3} + x^{2} - 2x - 1 = 0$
Solutions $f(x) = x^{3} + x^{2} - 2x - 1$ Polynomial
Continuous (-00,0)
 $f(-1) = (-1)^{3} + (-1)^{2} - 2(-1) - 1 = 1$ (-1,1) (1
 $f(-1) = 1^{3} + 1^{2} - 2(-1) - 1 = -1$
By I. U. T., there is at least -1 (1,-1)
One number x in [-1,1]
Such that $f(x) = 0$

Feb 22-9:46 AM